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A class of isoperimetric problems of stability optimization is considered. These arise., for example, when 
maximking the Euler force in the destabilization of a column (rod) of varying cross-section and given volume 
(Lagrange’s problem). It is well known that an extremum which depends on the form of the boundary 
conditions can he achieved for both simple and double eigenvalues. A class of problems is identified for which 
a global maximum is found at a simple eigenvalue. The possibility of achieving a local extremum for the first 
(simple) eigenvalue at stationary points is analysed qualitatively in terms of the parameter values and the form 
of the boundary conditions. 

1. STATEMENT OF THE PROBLEM 

The problem of finding the thickness distribution for a rod of given volume with a maximum 
destabilization force reduces [l] to investigating the extremal properties of the first (least) eigenvalue 
of a boundary-value problem for a second-order eigenvalue. Boundary-value problems of this type 
also arise when studying other physical and mathematical problems [2-6]. A complete investigation of 
this problem is therefore relevant for general self-adjoint boundary conditions. 

Consider the following self-adjoint boundary-value problem for eigenvalues 

Y”(x)+hh-p(x)y(x)-o. O<X<l (1.1) 

alY(0)+azY’(l)+a,Y(l)gO, a,y(l)-a2y’(0)+a4y(O)-0, ai =const, i-1,2,3,4 (1.2) 

Here p is a real number (p # 0), and h(x), ( x E [0, 11) is a function which satisfies the following 
conditions 

h(x)EL,, OSh(x)<K, (h(x))-1 (1.3) 

Here and below angle brackets denote integration with respect to x from 0 to 1, K is a fairy large 
positive number, the order of degeneracy when the function h(x) vanishes within the interval [0, l] 
does not exceed l/@ + 2), i.e. if h(xo) = 0 (0 < x0 < l), then h(x) = O((x -x0)7 where y < l/@ + 2) 
and at the ends of the interval degeneracies with orders not exceeding unity are allowed. The set of all 
functions satisfying the above conditions will be denoted by Qp 

In the rod stability problem the function h is the area of cross-section, and the parameterp is usually 
taken to be 1,2 or 3. Boundary conditions (1.2) can take one of four forms 

(1) Y(O)-y(l)-0; (2) y’(O)+y(O)-y(l)-0; (3) y’(O)-y(l)-& 

(4) Y’(O) -y’(l), y(l) = y(O)+y’(O) (1.4) 

These are the cases when both ends of the rod are freely supported (l), when one is clamped and 
the other is freely supported (2), when one is clamped and the other is free (3), and when both ends 
are clamped (4). The first (non-zero) eigenvalue of problem (1.1) with one of the boundary conditions 
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(1.4) can be interpreted as the force at which the rod loses stability. From a broader point of view it is 
interesting to extend the Lagrange problem to the case of general self-conjugate boundary conditions 
of the form (1.2) for any values of the parameterp # 0. 

All this enables us to formulate the following extremal problem: it is required to choose a function 
h(x) E QP such that the least (non-zero) eigenvalue attains its maximum (minimum). 

Naturally, the problem first arises of the existence of such functions and of methods of finding them. 
Solutions of this problem have been obtained [l, 7-101 forp = 1,2,3 and boundary conditions (1.4). 
The problem of accurate estimates of the least eigenvalue h1 with boundary conditionsy(0) = y(1) = 
0 has been studied for a range of values of the parameterg [4,5]. 

The aim of this paper is to obtain a qualitative answer to the following question: for a given value 
of the parameterp can a local maximum (minimum) of the first (least) eigenvalue hi(h) be reached if 
that eigenvalue is simple? 

2. A SPECTRAL ANALYSIS OF THE PROBLEM 

We shall seek a weak solution of boundary-value problem (l.l), (1.2) with a given function h(x) E 
QP To do this we consider the space H of functions satisfying boundary conditions (1.2) with norm 

llyll, - (((Y’j2 > + Y2W + Y2d 

The function y(x) E His a weak solution of problem (l.l), (1.2) if for any function z(x) E H we have 
the equality 

(Y’(X)Z’(X)) = qY(xk(xM-p(x)) 

For an arbitrary element h(x) E QP we consider the space of functions Lfjp with norm 

Ilyll,,# - (h-qX)Y2wP 

From the assumptions and conditions (1.3) we have L$,_, C L!&+t C L5,P+2. On the other hand, the 
set H is included .in Lt,p+2. Indeed 

Hence 

Y2W s 
2 

2 (a ) 
lY’& +Y2(o)~((Yf)2)+Y2(o)+Y2(1) 

We multiply the latter inequality by the functions h-@+2) (x) and integrate the result from 0 to 1, 
thereby obtaining 

Ilyll~,,,,~ r2llyll2, (r2 = 2(Iz- @+2)), h EQ,) 

It follows from well-known results that the inclusion of H in Lt,P+2 and Li,p is compact [ll]. 
It is important to note that in a number of cases the boundary-value problem (1.1) (1.2) has a zero 

eigenvalue. This can be simple, and we then have 

al - -a3 - -a4, a, -a2 =-a3 (2-l) 

or else double, and then 

aI -a2 --a3 =-a4 G-2) 
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In particular, the last type of boundary condition in (1.4) corresponds to the case (2.2). 
If a1 = 0, then (1.2) are Sturm-type boundary conditions and the spectrum of the problem consists 

of simple eigenvalues. For example, the first, second and third conditions in (1.4) are of this type 
However, if al # 0, then [12,13] the entire set of eigenvalues can be distributed in the form of two 

sequenceshi<~<~<...,&<)3irc&<.. . that increase without limit with h, d k < &,+i. 
In this case the appearance of double eigenvalues is therefore possible. The last kind of condition in 
(1.4) is of this type. 

Summarizing ah of the above, we can formulate the following assertion. 
For any function h(x) E QP a denumerable number of eigenfunctions cvi}T= I from the space H exists 

that are weak solutions of boundary-value problem (l.l), (1.2). If conditions (2.1) and (2.2) are not 
satisfied, these functions correspond to a sequence of non-zero eigenvalues 0 < hr Q h G . . . s A,, s 
. . . . 

The maximum multiplicity of the eigenvalues does not exceed two, and in the case when a1 = 0 the 
spectrum is simple. The eigenfunctions constitute a complete system both in the space H and the space 
L;,+j (i = 0, 1, 2) an d can be chosen so that the following normalization conditions are satisfied 

(h-pyiyj)=Gii’ &j-1.2 ,... (2.3) 

where 6, is the Kronecker delta. 
If conditions (2.1) or (2.2) are satisfied, problem (l.l), (1.2) has a simple or a double zero 

eigenvalue. In the case of (2.2) the eigenfunctibns corresponding to this value have the form 

Y,oW - Cl 9 Y&J - 9x + c3 

If the constants cl, ~2, cs are chosen so that 

(To -QP). Yl -(xKP)9 Y2 ‘(X2h-P)) 

then together with (2.3) the conditions 

thmPYOkYi > - O, 

are satisfied. 

WPYorYos) - L k,s - 1,2, i = 1,2 ,... 

3. VARIATIONAL ANALYSIS OF THE PROBLEM 

Let h(x) E QP We consider a function @r(x) such that h,(x) = h(x) + f&(x) E QP Here ]t 1 s to where 
to is a sufficiently small number. Using results on spectrum perturbations for self-adjoint operators in a 
Hilbert space [14] we find that the first eigenvalue and the first eigenfunction of the perturbed 
boundary-value problem (l.l), (1.2) can be expanded in a power series in the small parameter t 

y~(x)-y,(x)+fu,(x)+t2u,(X)+~(~2) 

hi -A, +w, +t2u2 +o(r2) 

Here pI pz are some numbers and z)r(x), 2)2(x) are functions in Lhzp+2 which are to be determined. 
We substitute the expansions obtained into Eq. (1.1) and equate coefficients of equal powers of r. 

We then obtain the following sequence of boundary-value problems 

Y;‘(x) + h,h-P(x)y, (x) - 0 (3.1) 
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w;yx)+~,h-p(x)w,(x) = h,ph-(p+l)(X)y, (x)6h(x)-cL,h-p(x)Y, (xl 

v;‘(x) + h,h-p(X>V*(X) - -j$A,p(p + l)h-(P+2,(X)yl(X)Gh2(X) + 

+Qh -(P+‘)(x)v,(x)Gh(x)+ p,ph- @+‘)(x)y,(x)~h(x)- v,q(x)h-‘(x)- p2h-%)y,(x) 

(3.2) 

(3.3) 

where the functions y,(x), z),(x), v&) satisfy the boundary conditions (1.2). We also note that the 
derivation of (3.1)-(3.3) used the representation 

Scalar-multiplying Eq. (3.2) by the function y,(x) in Lz and using the self-adjointness of boundary- 
value problem (l.l), (1.2) an the normalization conditions (2.3), we obtain 

u, (h,6h) = hlp(h-(P+l)y~~h) (3.4) 

FormuIa (3.4) is the first directional (Kato) derivative of the functional h,(h). In order to find a 
representation of the second Kato derivative we expand the function V,(X) in terms of a system of 
eigenfunctions of problem (l.l), (1.2). 

If problem (l.l), (1.2) has no zero eigenvalue, then 

VI (x1- 
,8 

aiYi Cx) 

We substitute this expansion into Eq. (3.2) and then multiply it sequentially in L2 by the eigen- 
functions y*(x), y&x) . . . . Using conditions (2.3), we find that 

ai --hl(hi-hl)-‘p(h-(P+1)yiy16h), i-2,3,... 

The coefficient u1 can be determined from condition (2.3) when i = j = 1. 
Indeed, substituting the expansions in powers oft obtained above into (2.3) with i = j = 1, we obtain 

2( h-% ,y, ) - p( h-‘P+,‘y;Gh) - 0 (3.5) 

From this it follows that 

a, = p(h-(P+‘)y;6h) / 2 (3.6) 

If the function z),(x) is substituted into Eq. (3.3) and then scalar-multiplied in Lz by the functiony,, 
by using the same arguments as when finding u1 together with formulae (3.5) and (3.6) we obtain 

~~(h,6h)--h,p(p+l)(h-‘p+2~y~6h2)l2+h,~2(h-~p+1~y~Gh)2- 

-k;pzii (hi -~l)-‘(h~p+‘)y,y,tih)2 (3.7) 

Note that because yi(x) E Li,P+2, (i = 1, 2, . . .), all the integrals in (3.4) and (3.7) are well-defined. 
We will now consider the case when boundary-value problem (l.l), (1.2) has a zero eigenvalue. 

Suppose, for example, that condition (2.2) is satisfied, i.e. &, = 0 is a double eigenvalue. Then 

Repeating ah the preceding arguments, we obtain in this case an equation which differs from (3.7) 
in that terms of the form 

A,p*i, (h-“‘+“y,,y,6h)* (3.8) 
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are added to the right-hand side. 
However, if problem (l.l), (1.2) only has a simple zero eigenvalue, then one of the functions ysl(x) 

or YE(x) must be omitted from the right-hand side of formula (3.7) when (3.8) is included. Here the 
number of terms with a plus sign is reduced by one. 

It is important to note that formulae (3.4), (3.7) and (3.8) give the first and second Kato derivatives 
of the functional hi(h) only when h,(h) is a simple eigenvalue. 

We will now formulate the necessary conditions for the extremum of the functional Xl(h). Using 
standard methods of the variational calculus, it can be shown that they are of the following form [l] 

h-(“+‘)(x)yf(x) = 1, xE(O,l) (3.9) 

Suppose that (3.9) is satisfied. Then sign-definiteness of the forms (3.7) and (3.8) with respect to 
functions &Jr(x) satisfying the conditions 

(Hz) = 0, M(x) EL, (3.10) 

is a necessary condition for a second-order extremum of the functional h*(h). However, if for standard 
h(x) andyt(x) variations a(x) exist satisfying (3.10) such that uz(h, &) > 0 (< 0), then one can assert 
that the functional X1(h) does not reach a maximum (minimum) at its stationary points. All this makes 
the use of formulae (3.7) and (3.8) suitable for proving assertions about local extrema not being 
reached at stationary points. There are exceptional cases when u&z, &) > 0 (CO) for all h(x) E QP 
and all functions a(x) E L,. In this case one can assert that the functional Xl(h) [15] is strictly convex 
(concave) an that consequently any local extremum will be global on the entire set. 

4. THE CASE 0 < p s 1 

The following result holds irrespective of the type of boundary condition (1.2). 

Theorem 4.1. The functional Al(h) ( w h ere h1 is a simple eigenvalue) is strongly concave when 0 < p 
< 1 and concave whenp = 1. 

proof. We introduce the auxiliary function 

V(x) = y, (x)h_‘(xMx), 8h(x)=m 

We shall prove that v(x) E L$,p. Indeed 

(qJ$-“) P (y;h-‘p+%h2) d (~~~~~Gh2)llY,II:,+2<m 

We expand the function v(x) in terms of the eigenfunction systemysl(x), y&x), yl(x), yZ(x), . . . of 
problem (l.l), (1.2) which is complete in Lip. We recall that the functions y&x) and y&x) defined in 
(2.4)-(2.6) occur in the expansion only in the case when the boundary-value problem (1.1) (1.2) 
admits of the existence of a zero eigenvalue. We have 

The Fourier coefficients do and di are given by the formulae 

don -(h-‘~y~k), di -(h-P~yi), k-1,2, i-1,2,... 

Consequently 

III&, = ‘j,d& +,#I: = (h-‘p+2’~:~h2) 

Using the last two equalities and bearing in mind (3.8) we find that formula (3.7) can be written in 
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the following form 

Because 

hi>h,, i-2,3 ,,.., d:+d,2,+d&4IWll&, 

we have the inequality 

The last expression is strictly negative when 0 < P < 1 for any 6h E L,. 
Whenp = 1 we find that p2(h, &) G 0 which it was required to prove. 

5. THE CASES p < 0 AND p 7 1. BOUNDARY-VALUE PROBLEM 
WITHOUT ZERO EIGENVALUES 

We shall assume boundary-value problem (l.l), (1.2) has no zero eigenvalues, i.e. conditions (2.1), 
(2.2) are not satisfied. 

Theorem 5.1. Whenp < -1 andp > 1 the functional Xl(h) does not reach a local minimum, while 
when -1 < p < 0 there is a local maximum at the stationary points if&(h) is a simple eigenvalue. 

Proof. We consider the set of admissible variations 6h E L, satisfying conditions (3.10). Since the 
necessary condition (3.9) is satisfied 

(h-‘P+‘)y@I) -(M) - 0 (5-I) 

Taking this into account it follows from (3.7) that l.~~(h, 6h) < 0, &I f 0 whenp < - 1 or p > 0 
because the last sum in (3.7) is obviously non-negative. 

We will now consider the case -1 < p < 0. We introduce the following system of functions 

gl(x)-Ir gi(X)=h-‘Pt’)(X)y~(x)y;(x), i-2,3,.. 

Here ~i(x)}~=1 is a system of eigenfunctions of problem (l.l), (1.2) with a stationary/z(x) satisfying 
condition (3.9). The functions gi(X) belong to the space L1. Indeed 

(h-(P+‘)ly,lly.l)s (h-‘P+‘)y;)~ (y?h-‘p+“p s 11y.11; 
I I I .P+ 

2< co 

Here we have used condition (3.9) from which (h-@“)y$. 
The system (gi(X)}i”,l is linearly independent. 

Suppose the contrary. Then constants &, &. . . exist such that 

We multiply this equality by the function h(x) and integrate from 0 to 1. By conditions (2.3) and (1.3) we obtain 
61 (/Z(X)) = 61 = 0. But we then have the equality 

Yl(X)~hiYi(x)-O 
I- 

which is impossible by the linear independence of the eigenfunctionsy&), I’ = 2,3 . . . 

We consider the linear space 2, generated by the functions 

81 -1, gi ‘y~yih-(P”‘, i-1,2,..,, N-l, N+2,... 
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gN - h++‘)YNY, @z, 
We use the separability theorem. An element &Jr0 E L, exists such that the linear functional 

F(g) - (g8h” ), 8 EL, 

is equal to zero if g E 2, and F&) # 0 when gN 4 ZM 
We note that because gl = 1 lies in the set ZN, condition (5.1) is satisfied. Expression (3.7) for the 

second Kato derivative will not contain a second right-hand term for the element &ho obtained, and 
from the entire infinite sum that constitutes the third term only the term corresponding to i = N 
remains. Because 

(h-(P+1)yNy,Gho)2 c (h-Py~)(h4p+2)y:(6h0)2) 

taking into account the normalization condition (2.3), we find from (3.7) that 

~2(h,M0)a --kg ++ ~)(h-c~+2)yf(6ho)2) 
N 1 

(5.2) 

The last expression will be strictly positive if 

Since hN+ m when N + 00, by choosing sufficiently large N one can arrive at a right-hand side for (5.2) 
that is positive when -1 < p < 0. Hence the functional does not reach a local maximum for the given 
values of p. 

If the coefficient al = 0 in (1.2), the boundary-value problem (l.l), (1.2) is of Sturm type and its 
spectrum is simple. Hence the requirement for simple eigenvalues in the conditions of Theorem 5.1 
can be omitted. 

6. THE CASES p < 0 AND p > 1. BOUNDARY-VALUE PROBLEM 
WITH ZERO EIGENVALUE 

The following result holds. 

Theorem 6.1. Suppose that boundary-value problem (l.l), (1.2) has a zero eigenvalue, that condition 
(3.9) is satisfied for the function h(x) and that whenp > 1 the inequality 

h(x)2 a2 > 0, xE(0.1) (6-l) 

holds. 
Then whenp < 0 andp > 1 the functional hi(h) does not reach a local extremum at the stationary 

points if h,(h) is a simple eigenvalue. 

Prooj We will first consider the case when the first condition in (2.1) is satisfied, case (2.2) being 
considered similarly. We put 

6h - h-P(x)y,(~) (6.2) 

We will show that the variation &Jr is admissible. Because the eigenfunctionyol(x~ = cl (the constant 
cl being defined by formulae (2.5)) is orthogonal to the first eigenfunction in Lz,~, we have (a) = 
(h-pyl) = 0. Thus condition (3.10) is satisfied. We will show that a(x) is a bounded function. Indeed, 
from the necessary condition for an extremum (3.9) we have 

Sh2(x) = h-2p(x)yf(x)- h’-P(x) 



1036 A. S. Bratus’ 

The last function is bounded for allp < 0, and also for allp > 1 if condition (6.1) is satisfied. 
We substitute 6h in the form (6.2) into expression (3.7) for the second Kato derivative of the 

functional J+(h) and bear (3.8) in mind. We again use condition (3.9). Then for i = 2,3, . . . we have 
the equality 

(h-‘P+“yiy~Gh) = (hePyi) = 0 

because the eigenfunctionsyi are orthogonal to the eigenfunctionyol(x) = cl. 
On the other hand 

(h +'+')yo,y,Gh) = (hyP)% (6.4) 

Here we have used formulae (2.5) for the value of the constant cl and the normalization condition 
(2.6). 

From (6.3) and (6.4) we find that formula (3.7), by virtue of (3.8), can be represented in the form 

(6.5) 

Here we have used the equality 

(h-‘P+2’y$Q,h2) a (h-2(p+')yfh-P) I (h-p) 

which follows from (6.2) and condition (3.9). 
From (6.5) we find that p2(h, &) > 0 when p < 0 or p > 1, and that consequently the functional 

hi(h) does not reach a local maximum at stationary points. 
These values of the parameterp do not admit of a local minimum either. 

Hence, as in the case of Theorem 5.1, we consider the system of functions 

g, -1, gi -y,yih-(P+‘), i-1,2,3... 

adding to it the functions go = ylglh -@ + I) As before, it can be proved that the functions gi E L1, and the system . 
(gi}~~~ is linearly independent. Using the separability theorem we construct a functional 

such that 

F(go) - 0, F(g,) - 0, F(gi) l 0, i - 2,3.... 

We note that condition (5.1) is satisfied here because condition (3.9) holds. 
The second Kate derivative (3.7) at the element has the form 

CL2 who) - -$p(p+ l)(h-(p+2)y:(6h0)2)-p2hl &Xi -h,)-‘(h-(P+‘)y,GhO)2 
I- 

Hence p2(h, ISo) c 0 whenp c - 1 orp > 0. From the result of Theorem 4.1 we know that when 0 < p S 1 the 
functional Al(h) is concave. From this we conclude that the functional &(h) does not reach a local minimum when 
p < 0 orp > 1 when Xl(h) is a simple eigenvalue. 

Remark. If a1 # 0 and boundary-value problem (l.l), (1.2) has a zero eigenvalue, it follows from Theorem 6.1 
that when p < 0 orp > 1 a local maximum or minimum of the functional k,(h) can only be reached at a double 

3L1. If however q = 0, a local extremum is in general not reached at stationary points because in this case the 
spectrum is simple. 
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7. CONCLUSION 

The results of this paper show that the multiplicity property of an extremal eigenvalue depends 
strongly on the fibrin of the appearance of zero eigenvalues in aids-value problem (Ll), 
(1.2). It is this feature that distinguishes the case of rigid attachment in the Lagrange problem from 
other boundary conditions. 

Note that the initial solution of this problem [l] had points of degeneracy (zeros) of the function 
h(x), with the maximum being reached at a simple hi. Indeed, as has been shown [7], the maximum is 
reached at a double &. The necessary conditions for an extremum in this case were obtained [Id] and 
extended to the general case [17]. On the basis of these conditions the problem was solved [8] for the 
camp = 1,2,3. Whenp = 2,3 the maximum is achieved at a double hr, and the optimal distribution 
h(x) does not vanish, which agrees with the assertion of Theorem 6.1. Theorem 4.1 shows that in the 
p = 1 case the maximum is reached at a simple eigenvalue. Note that the results obtained in [8] were 
repeated in 19, lo], and in [lo] the case of boundary conditions (1.4) withp > 0 was also studied. 

Results in [4,5] which give exact estimates for the least eigenvalue &r are in good agreement with 
the conclusion of Theorem 5.1. Nearly sufficient extremum conditions were also considered in [18] for 
the casep = 2 and boundary conditions (1.4). 

It should be noted that all the results obtained above can be significantly strengthened if the 
derivatives (3.7) and (3.8) are strong functional derivatives in the Frechet sense. In particular, it has 
been shown [ 191 that this is the case if, in addition to conditions (l-3), the function h(x) has a bounded 
square-~te~able derivative. Here the problem of the extremal properties of the first eigenvalue of 
system (Ll), (1.2) acquires an essentially new form requiring special consideration. 
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