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A class of isoperimetric problems of stability optimization is considered. These arise, for example, when
maximizing the Euler force in the destabilization of a column (rod) of varying cross-section and given volume
(Lagrange’s problem). It is well known that an extremum which depends on the form of the boundary
conditions can be achieved for both simple and double eigenvalues. A class of problems is identified for which
a global maximum is found at a simple eigenvalue. The possibility of achieving a local extremum for the first
(simple) eigenvalue at stationary points is analysed qualitatively in terms of the parameter values and the form
of the boundary conditions.

1. STATEMENT OF THE PROBLEM

The problem of finding the thickness distribution for a rod of given volume with a maximum
destabilization force reduces [1] to investigating the extremal properties of the first (least) eigenvalue
of a boundary-value problem for a second-order eigenvalue. Boundary-value problems of this type
also arise when studying other physical and mathematical problems [2-6]. A complete investigation of
this problem is therefore relevant for general self-adjoint boundary conditions.

Consider the following self-adjoint boundary-value problem for eigenvalues

Y(xX)+MP(x)y(x)=0, O0<x<l (1.1)
o y(0)+ay’ (D+ay(1)=0, o y()-a,y'(0)+a,y(0)=0, a,=const, i=12,34 (1.2)

Here p is a real number (p # 0), and h(x), (x € [0, 1]) is a function which satisfies the following
conditions

h(x)EL,, O0<h(x)<K, (h(x))=1 (1.3)

Here and below angle brackets denote integration with respect to x from 0 to 1, K is a fairy large
positive number, the order of degeneracy when the function /(x) vanishes within the interval [0, 1]
does not exceed 1/(p + 2), i.e. if A(xg) = 0 (0 < xo < 1), then h(x) = O((x — xp)") where y < 1/(p + 2)
and at the ends of the interval degeneracies with orders not exceeding unity are allowed. The set of all
functions satisfying the above conditions will be denoted by Q.

In the rod stability problem the function 4 is the area of cross-section, and the parameter p is usually
taken to be 1, 2 or 3. Boundary conditions (1.2) can take one of four forms

(1) y(0)=y(1)=0; (2) y'(0)+y(0)=y(1)=0; (3) y'(0)=y(1)=0;
(4) y'(0)=y'(1), y(1)=y(0)+y'(0) (1.4)
These are the cases when both ends of the rod are freely supported (1), when one is clamped and

the other is freely supported (2), when one is clamped and the other is free (3), and when both ends
are clamped (4). The first (non-zero) eigenvalue of problem (1.1) with one of the boundary conditions
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(1.4) can be interpreted as the force at which the rod loses stability. From a broader point of view it is
interesting to extend the Lagrange problem to the case of general self-conjugate boundary conditions
of the form (1.2) for any values of the parameter p # 0.

All this enables us to formulate the following extremal problem: it is required to choose a function
h(x) € @, such that the least (non-zero) eigenvalue attains its maximum (minimum).

Naturally, the problem first arises of the existence of such functions and of methods of finding them.
Solutions of this problem have been obtained [1, 7-10] for p = 1, 2, 3 and boundary conditions (1.4).
The problem of accurate estimates of the least eigenvalue A, with boundary conditions y(0) = y(1) =
0 has been studied for a range of values of the parameter p [4, 5].

The aim of this paper is to obtain a qualitative answer to the following question: for a given value
of the parameter p can a local maximum (minimum) of the first (least) eigenvalue A;(k) be reached if
that eigenvalue is simple?

2. A SPECTRAL ANALYSIS OF THE PROBLEM

We shall seek a weak solution of boundary-value problem (1.1), (1.2) with a given function A(x) €
O, To do this we consider the space H of functions satisfying boundary conditions (1.2) with norm

Iyl = ({((7)2) +¥2(0)+ y2 (1))

The function y(x) € H is a weak solution of problem (1.1), (1.2) if for any function z(x) € H we have
the equality

(V' ()2 (x)) = My(x)z(x)h 7P (x))
For an arbitrary element h(x) € O, we consider the space of functions L';}_, p With norm
iyl , = (A7 (x)y* ()2

From the assumptions and conditions (1.3) we have L'i, »C L'i, p+1C L’i p+2- On the other hand, the
set H is included in L% ,,,. Indeed

y(x) -Zy'dﬂy(o)

Hence

2

2 x
Y ("’s(p'dx) +Y20)= (")) + Y2 (0) + Y (1)

2

We multiply the latter inequality by the functions A ®*?(x) and integrate the result from 0 to 1,
thereby obtaining

Uyl pup< P2yl (P2 =2(h"P*D), hEQ,)
It follows from well-known results that the inclusion of H in Lg, p+2and L'i, p 1s compact [11].
It is important to note that in 2 number of cases the boundary-value problem (1.1), (1.2) has a zero
eigenvalue. This can be simple, and we then have
O =—0ly=—0y, O)=0,;=-0;3 (2.1)
or else double, and then

QU =0y = —Cly =—0y 2.2)
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In particular, the last type of boundary condition in (1.4) corresponds to the case (2.2).

If ay = 0, then (1.2) are Sturm-type boundary conditions and the spectrum of the problem consists
of simple eigenvalues. For example, the first, second and third conditions in (1.4) are of this type.

However, if oy # 0, then {12, 13] the entire set of eigenvalues can be distributed in the form of two
sequences Ay < Ay < A3 < ..., (R <)A; <A, < ... that increase without limit with A,, < A, < A,41.
In this case the appearance of double eigenvalues is therefore possible. The last kind of condition in
(1.4) is of this type.

Summarizing all of the above, we can formulate the following assertion.

For any function A(x) € O, a denumerable number of eigenfunctions {y;}7- ; from the space H exists
that are weak solutions of boundary-value problem (1.1), (1.2). If conditions (2.1) and (2.2) are not
satisfied, these functions correspond to a sequence of non-zero eigenvalues0 < Ay s, <...s ), <

The maximum multiplicity of the eigenvalues does not exceed two, and in the case when o; = 0 the

spectrum is simple. The eigenfunctions constitute a complete system both in the space H and the space
L'z', p+i (( =0, 1, 2) and can be chosen so that the following normalization conditions are satisfied

(hPyy;)=0;, 6j=12,.. (2.3)
where J; is the Kronecker delta.

If conditions (2.1) or (2.2) are satisfied, problem (1.1), (1.2) has a simple or a double zero
eigenvalue. In the case of (2.2) the eigenfunctions corresponding to this value have the form

No(x)=cp, Yy(x)=cyx+cy (2.4)
If the constants c,, ¢;, c; are chosen so that
b %
(Yo=(h), ¥y =(xhP), v, = (x*h"))
then together with (2.3) the conditions
(hPyoryiy =0, (B Pyoyos) =8y, kis=12, i=12,.. (2.6)

are satisfied.

3. VARIATIONAL ANALYSIS OF THE PROBLEM

Let h(x) € Q,. We consider a function 84(x) such that i,(x) = h(x) + tdh(x) € Q,. Here |t| <1, where
Iy is a sufficiently small number. Using results on spectrum perturbations for self-adjoint operators in a
Hilbert space [14] we find that the first eigenvalue and the first eigenfunction of the perturbed
boundary-value problem (1.1), (1.2) can be expanded in a power series in the small parameter ¢

YH(x) =3 (x) + 0y (2)+ 0 (1) + 0(1?)

N, = Ay +1u, + 120, +o(1?)
Here py p, are some numbers and v;(x), v,(x) are functions in Lhz, p+2 Which are to be determined.
We substitute the expansions obtained into Eq. (1.1) and equate coefficients of equal powers of ¢.

We then obtain the following sequence of boundary-value problems

N (x)+ AP (x)y(x)=0 (G.1)
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V](x) + A AP ()0, (x) = Ay ph P (x)y, (X0)BR(x) - u AP (x)y, (x) (3.2)
V3 (X)+ MATP ()0 (x) = = BN, p(p + DA™ P D (x)y, (x)0h% (x) +
+hph™ Dy (x)8h(x) + 1y ph™ PN (0)BA(x) - 0y (DR TP(x) -k P (X)y(x)  (33)

where the functions y(x), v;(x), v,(x) satisfy the boundary conditions (1.2). We also note that the
derivation of (3.1)—(3.3) used the representation

hP(x) = h™P (x)—ph~ PV (x)0h(x) + % p(p + DR ™P*D (x)8h% (x) +0(£?)

Scalar-multiplying Eq. (3.2) by the function y;(x) in L, and using the self-adjointness of boundary-
value problem (1.1), (1.2) an the normalization conditions (2.3), we obtain

wy (h,B8h) = &, p(h™P*Dy ] 5h) (34)

Formula (3.4) is the first directional (Kato) derivative of the functional A;(k). In order to find a
representation of the second Kato derivative we expand the function v;(x) in terms of a system of
eigenfunctions of problem (1.1), (1.2).

If problem (1.1), (1.2) has no zero eigenvalue, then

v.(x)-j1 a;y;(x)

We substitute this expansion into Eq. (3.2) and then multiply it sequentially in L, by the eigen-
functions y,(x), ys(x) . . . . Using conditions (2.3), we find that

a; == (A=) p(h Py, y,0h), i=23,...

The coefficient a; can be determined from condition (2.3) wheni =j = 1.
Indeed, substituting the expansions in powers of ¢ obtained above into (2.3) withi = j = 1, we obtain

2(h7Pvy,) - p(hP*Vyloh) = 0 (35)
From this it follows that
a, = p(hP*Dy28h) 12 (3.6)

If the function v,(x) is substituted into Eq. (3.3) and then scalar-multiplied in L, by the function y,,
by using the same arguments as when finding p, together with formulae (3.5) and (3.6) we obtain

Wy (h,6k) =~ p(p + 1)(hP*Dy28h2) 12+ N p2 (R~ P*Vy 202 -
‘)‘-zle i (Mi=X )™ (h—(w))’i)’lah)z (3.7)
Note that because y,(x) € L’z', p+2 ((=1,2,...), all the integrals in (3.4) and (3.7) are well-defined.
We will now consider the case when boundary-value problem (1.1), (1.2) has a zero eigenvalue.
Suppose, for example, that condition (2.2) is satisfied, i.e. Ay = 0 is a double eigenvalue. Then

v (x) = agy Yo (X) + gy (X) + @y () +ayy, (x) + ...

Repeating all the preceding arguments, we obtain in this case an equation which differs from (3.7)
in that terms of the form

A 2 2 h—(p+|) Sh 2 3.8
1P ?:1< Yor y10h) (3.8)
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are added to the right-hand side.

However, if problem (1.1), (1.2) only has a simple zero eigenvalue, then one of the functions yg;(x)
or ygp(x) must be omitted from the right-hand side of formula (3.7) when (3.8) is included. Here the
number of terms with a plus sign is reduced by one.

It is important to note that formulae (3.4), (3.7) and (3.8) give the first and second Kato derivatives
of the functional A,(%) only when A,(h) is a simple eigenvalue.

We will now formulate the necessary conditions for the extremum of the functional A;(h). Using
standard methods of the variational calculus, it can be shown that they are of the following form [1]

h—(p-o-l)(x)ylz(x)- 1, XE(O,I) (3.9)

Suppose that (3.9) is satisfied. Then sign-definiteness of the forms (3.7) and (3.8) with respect to
functions d4(x) satisfying the conditions

(8h)=0, Bh(x)EL, (3.10)

is a necessary condition for a second-order extremum of the functional A;(h). However, if for standard
h(x) and y,(x) variations dh(x) exist satisfying (3.10) such that p,(h, d2) > 0 (< 0), then one can assert
that the functional A,(%) does not reach a maximum (minimum) at its stationary points. All this makes
the use of formulae (3.7) and (3.8) suitable for proving assertions about local extrema not being
reached at stationary points. There are exceptional cases when p,(k, &) > 0 (<0) for all A(x) € Q,
and all functions 8#(x) € L... In this case one can assert that the functional A;(h) [15] is strictly convex
(concave) an that consequently any local extremum will be global on the entire set.

4. THE CASEO0 <p =1
The following result holds irrespective of the type of boundary condition (1.2).

Theorem 4.1. The functional A,(h) (where A, is a simple eigenvalue) is strongly concave when 0 < p
< 1 and concave when p = 1.

Proof. We introduce the auxiliary function
Y(x) =y (k™ (2)8h(x), Bh(x)EL,
We shall prove that y(x) € Lg, p- Indeed
(W2hPY = (y2h P Dpn2) < (eré&ﬁ]éhz)ll WIE pup <o
We expand the function y(x) in terms of the eigenfunction system yg;(x), yo2(%), y1(x), y2(x), . . . of
problem (1.1), (1.2) which is complete in L'z', p- We recall that the functions yy;(x) and yg,(x) defined in

(2.4)(2.6) occur in the expansion only in the case when the boundary-value problem (1.1), (1.2)
admits of the existence of a zero eigenvalue. We have

2 o
P(x)= gldok)’mf(x) + ‘gdi)’,‘ (x)
The Fourier coefficients dyy, and d; are given by the formulae

dOk Ld (h_pwy()k ), d’ = <h—pwy’ ), k = 1,2,L i= 1,2,...

Consequently
2 -]
IR, = i+ St = 0 on

Using the last two equalities and bearing in mind (3.8), we find that formula (3.7) can be written in
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the following form
b (h,8h) = ~A, p(p + DI , 12+ N p(d3, +d3y +d7) - p? ,i("" A
Because
Ai>Ny, i=23,., df +d +dp <Iyll},

we have the inequality
w2 (h,8h) < A p(p=D) Il , 12
The last expression is strictly negative when 0 < P < 1 forany dh € L...
When p = 1 we find that py(h, &) < 0 which it was required to prove.

5. THE CASES p < 0 AND p > 1. BOUNDARY-VALUE PROBLEM
WITHOUT ZERO EIGENVALUES

We shall assume boundary-value problem (1.1), (1.2) has no zero eigenvalues, i.e. conditions (2.1),
(2.2) are not satisfied.

Theorem 5.1. When p < —1 and p > 1 the functional A,(#) does not reach a local minimum, while
when -1 < p < 0 there is a local maximum at the stationary points if A;(h) is a simple eigenvalue.

Proof. We consider the set of admissible variations &k € L., satisfying conditions (3.10). Since the
necessary condition (3.9) is satisfied

(h™P*Dy28h) = (8h) = 0 (5.1)
Taking this into account it follows from (3.7) that py(h, 84) < 0,84 # Owhenp < —lorp >0

because the last sum in (3.7) is obviously non-negative.
We will now consider the case —1 < p < 0. We introduce the following system of functions

g (x)=1, g:(x)=h" Py (x)y(x), i=23,.

Here {y;(x)}~1 is a system of eigenfunctions of problem (1.1), (1.2) with a stationary A(x) satisfying
condition (3.9). The functions g;(x) belong to the space L;. Indeed

(B D1ylyly < (DR G2 PYE<ly R, < o0

Here we have used condition (3.9) from which (A#*+y?).
The system {g;(x)};= is linearly independent.

Suppose the contrary. Then constants 8y, 8. . . exist such that
%6;g,~(x)+6| - 0

We multiply this equality by the function A(x) and integrate from 0 to 1. By conditions (2.3) and (1.3) we obtain
8, (h(x)) = &, = 0. But we then have the equality

yn(x)liém(x) =0

which is impossible by the linear independence of the eigenfunctions y,(x),i = 2,3 .. ..

We consider the linear space Zy, generated by the functions

gi=1, g=yyh Y, i=l2,. N-1, N+2,.
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En™ h_(pﬂ))’N)’l &Zy

We use the separability theorem. An element 3h° € L., exists such that the linear functional
F(g)=(sdh°), g€L

is equal to zero if g € Zy and F(gy) # 0 when gy & Zy.

We note that because g; = 1 lies in the set Zy, condition (5.1) is satisfied. Expressmn (3.7) for the
second Kato derivative will not contain a second right-hand term for the element 84° obtained, and
from the entire infinite sum that constitutes the third term only the term corresponding to i = N
remains. Because

(R Py, 3,6h°)? < (hPyk h P Py2 (8h°)?)

taking into account the normalization condition (2.3), we find from (3.7) that

n2(h, 6h°)>—'/\.1p(p;1 )\""’ )(h“’"” 2(8h°)%) (5.2)
N

The last expression will be strictly positive if

“142ky /(A +ky) < p<0 (ky=A/hy)

Since Ay — e when N — oo, by choosing sufficiently large N one can arrive at a right-hand side for (5.2)
that is positive when —1 < p < 0. Hence the functional does not reach a local maximum for the given
values of p.

If the coefficient a; = 0 in (1.2), the boundary-value problem (1.1), (1.2) is of Sturm type and its
spectrum is simple. Hence the requirement for simple eigenvalues in the conditions of Theorem 5.1
can be omitted.

6. THE CASES p < 0 AND p > 1. BOUNDARY-VALUE PROBLEM
WITH ZERO EIGENVALUE
The following result holds.

Theorem 6.1. Suppose that boundary-value problem (1.1), (1.2) has a zero eigenvalue, that condition
(3.9) is satisfied for the function A(x) and that when p > 1 the inequality

h(x)=8%>0, x€(0,1) (6.1)

holds.
Then when p < 0 and p > 1 the functional A,(k) does not reach a local extremum at the stationary
points if A,(h) is a simple eigenvalue.

Proof. We will first consider the case when the first condition in (2.1) is satisfied, case (2.2) being
considered similarly. We put

oh = h7P (x)y,(x) (6.2)

We will show that the variation &4 is admissible. Because the eigenfunction y01(xz = c; (the constant
¢y being defined by formulae (2.5)) is orthogonal to the first eigenfunction in L; ,, we have (8h) =
{nPy;) = 0. Thus condition (3.10) is satisfied. We will show that 8k(x) is a bounded function. Indeed,
from the necessary condition for an extremum (3.9) we have

3h%(x) = h™P (x)y? (x) = h'P (x)
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The last function is bounded for all p < 0, and also for all p > 1 if condition (6.1) is satisfied.

We substitute k4 in the form (6.2) into expression (3.7) for the second Kato derivative of the
functional A,(h) and bear (3.8) in mind. We again use condition (3.9). Then fori = 2, 3, .. . we have
the equality

(hP*Dy.y,8h) = (h™Py;) =0 (6.3)

because the eigenfunctions y; are orthogonal to the eigenfunction yg(x) = c;.
On the other hand

(P y0,3,0h) = (P )% (64)
Here we have used formulae (2.5) for the value of the constant ¢, and the normalization condition

(2.6).
From (6.3) and (6.4) we find that formula (3.7), by virtue of (3.8), can be represented in the form

iy (h,8h) = My p(p—-1)KP)/ 2 (65)
Here we have used the equality
(B T8hy = (5P P) = (177
which follows from (6.2) and condition (3.9).
From (6.5) we find that p,(h, 81) > 0 when p < 0 or p > 1, and that consequently the functional

A1(h) does not reach a local maximum at stationary points.
These values of the parameter p do not admit of a local minimum either.

Hence, as in the case of Theorem 5.1, we consider the system of functions
1 .
g =1 g =yyh PV, =123

adding to it the functions gy = yih 1, As before, it can be proved that the functions g; € L,, and the system
{g:} 720 is linearly independent. Using the separability theorem we construct a functional

F(g)=(gdh?), g€L,, sh’€L,
such that
F(gg)=0, F(g)=0, F(g;)»0, i=2,3,..

We note that condition (5.1) is satisfied here because condition (3.9) holds.
The second Kato derivative (3.7) at the element has the form

o (h,8h0) = ~A; p(p+ 1)(B~P* Dy (81°)?) - p*, _ZI(M AT (R Py, 510)?

Hence py(h, 8h"%) < 0 when p < -1 orp > 0. From the result of Theorem 4.1 we know that when 0 < p < 1 the
functional A, (k) is concave. From this we conclude that the functional A,(%) does not reach a local minimum when
p < 0orp > 1when Ay(h) is a simple eigenvalue.

Remark. If o; # 0 and boundary-value problem (1.1), (1.2) has a zero eigenvalue, it follows from Theorem 6.1
that when p < 0 or p > 1 a local maximum or minimum of the functional A,(k) can only be reached at a double
Ay. If however oy = 0, a local extremum is in general not reached at stationary points because in this case the
spectrum is simple.
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7. CONCLUSION

The results of this paper show that the multiplicity property of an extremal eigenvalue depends
strongly on the possibility of the appearance of zero eigenvalues in boundary-value problem (1.1),
(1.2). It is this feature that distinguishes the case of rigid attachment in the Lagrange problem from
other boundary conditions.

Note that the initial solution of this problem [1] had points of degeneracy (zeros) of the function
h(x), with the maximum being reached at a simple A,. Indeed, as has been shown {7], the maximum is
reached at a double A;. The necessary conditions for an extremum in this case were obtained [16] and
extended to the general case [17]. On the basis of these conditions the problem was solved [8] for the
cases p = 1,2, 3. When p = 2, 3 the maximum is achieved at a double A;, and the optimal distribution
h(x) does not vanish, which agrees with the assertion of Theorem 6.1. Theorem 4.1 shows that in the
p = 1 case the maximum is reached at a simple eigenvalue. Note that the results obtained in [8] were
repeated in [9, 10}, and in [10] the case of boundary conditions (1.4) with p > 0 was also studied.

Results in [4, 5] which give exact estimates for the least eigenvalue A; are in good agreement with
the conclusion of Theorem 5.1. Nearly sufficient extremum conditions were also considered in [18] for
the case p = 2 and boundary conditions (1.4).

It should be noted that all the results obtained above can be significantly strengthened if the
derivatives (3.7) and (3.8) are strong functional derivatives in the Fréchet sense. In particular, it has
been shown [19] that this is the case if, in addition to conditions (1.3), the function A(x) has a bounded
square-integrable derivative. Here the problem of the extremal properties of the first eigenvalue of
system (1.1), (1.2) acquires an essentially new form requiring special consideration.

REFERENCES

1. TADJBAKHSH 1. and KELLER J. B,, Strongest columns and isoperimetric inequalities for eigenvalues.
Trans. ASME Mech. Ser. E. 29, 1, 159-164, 1962.
2. KREIN M. G., Some maximum and minimum problems for characteristic numbers and Lyapunov stability
zones. Prikl. Mat. Mekh. 15, 3, 323-348, 1951.
3. RAPPOPORT 1. M,, A variational problem in the theory of ordinary differential equations with boundary
conditions. Dokl. Akad. Nauk SSSR 73, 5, 889-890, 1950.
4. YEGOROV Yu. V. and KONDRAT'YEV V. A, Estimates of the first eigenvalue of the Sturm-Liouville
Problem. Uspekhi Mat. Nauk 39, 2, 151-152, 1984.
5. YEGOROV Yu. V. and KONDRAT’YEV V. A,, An estimate of the first eigenvalue of a self-adjoint elliptic
operator. Vestn. MGU, Ser. 1 Mat. Mekh. 3, 46-52, 1983.
6. BUSLAYEV A. P. and TIKHOMIROV V. M,, Spectra of non-linear differential equations and widths of
Sobolev classes. Mat. Shomik 181, 12, 1587-1606, 1990.
7. OLHOFF N. and RASMUSSEN S, Optimal structural design under multiple eigenvalue constraints. Int. J,
Solids Struct. 20, 3, 211-231, 1984.
8. SEIRANYAN A. P, A Lagrange problem. Izv. Akad. Nauk SSSR, MTT 2, 101-111, 1984.
9. MAZUR E. E, Optimal structural design under multiple eigenvalue constraints, Int. J Solids Struct. 20, 3,
211-231, 1984.
10. COX S. J. and OVERTON M. L,, On the optimal design of columns against buckling. SIAM J. Math. Anal.
23, 2, 287-325, 1992.
11. MIKHLIN S. G., Variational Methods in Mathematical Physics. Nauka, Moscow, 1970.
12. NAIMARK M. A,, Linear Differential Operators. Nauka, Moscow, 1969.
13. KAMKE E., Handbook of Ordinary Differential Equations. Nauka, Moscow, 1971.
14. KATO T, Perturbation Theory for Linear Operators. Mir, Moscow, 1972,
15. ALEKSEYEV V. M,, TIKHOMIROV V. M. and FOMIN 8. V,, Optimal Control. Nauka, Moscow, 1979.
16. BRATUS’ A. S. and SEIRANYAN A. P, Bimodal solutions in eigenvalue optimization problems. Prikl. Mat.
Mekh. 47, 4, 546-554, 1983.
17. BRATUS’ A. S, Condition of extremum for eigenvalues of elliptic boundary-value problems. J. Optimiz.
Theory Appl. 68, 3, 423-436, 1991.



1038 A. S. Bratus’

18. BRATUS’ A. S. and SEIRANYAN A. P, Sufficient conditions for extrema in eigenvalue optimization

problems. Prikl. Mat. Mekh. 48, 4, 657-667, 1984.
19. LITVINOV V. G., Optimization in Elliptic Boundary-value Problems with Applications to Mechanics. Nauka,

Moscow, 1987.

Translated by R.L.Z.



